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Abstract

We investigate the Liouvillian integrability of Hamiltonian systems describing
a universe filled with a scalar field (possibly complex). The tool used is
the differential Galois group approach, as introduced by Morales-Ruiz and
Ramis. The main result is that the generic systems with minimal coupling
are non-integrable, although there still exist some values of parameters for
which integrability remains undecided; the conformally coupled systems are
only integrable in four known cases. We also draw a connection with the
chaos present in such cosmological models, and the issues of the integrability
restricted to the real domain.

PACS numbers: 98.80.Cq, 98.80.Jk, 02.30.Ik, 45.20.Jj

1. Introduction

Homogeneous and isotropic cosmological models, although very simple, explain the recent
observational data very well [55, 57]. Their foundation is the Friedmann–Robertson–Walker
(FRW) universe, described by the metric

ds2 = a(η)2

[
−dη2 +

dr2

1 − Kr2
+ r2 d2�2

]
, (1)

where a is the scale factor, d2�2 is the line element on a two-sphere, and we chose to use
the conformal time η. As can be seen from the above metric, the scale factor represents the
relative change in the distance of two points whose spatial coordinates are fixed. It depends
only on time, so that the whole universe is deformed in a homogeneous fashion. From the
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anthropocentric point of view it could be seen as a three-dimensional space evolving in the
time—in the simplest case when the curvature index K is zero, it would be a Euclidean space
stretched according to a.

If we were to fill such a universe with matter, its properties could only depend on time,
and be the same in all points of the spatial subspace at a given value of η—otherwise the model
would no longer be homogeneous.

For example a perfect fluid would be completely described by two quantities—its density
and pressure as functions of time. A scalar field would be described by its field variables.
Also a cosmological constant with its trivial dependence on time could always be included in
such models.

Depending on the matter components one obtains various evolutions of the scale factor a,
as given by the general action

I = c4

16πG

∫ [
R − 2� − 1

2
(∇αψ̄∇αψ + V (ψ) + ξR|ψ |2) − 	

] √−g d4x, (2)

where R is the Ricci scalar, � the cosmological constant, V the field’s potential, ξ the coupling
constant and 	 is the density of the perfect fluid. The potential usually includes at least a
quadratic term m2|ψ |2, where m is the so-called mass of the field. When ξ = 0 we say that
the field is minimally coupled—it does not uncouple since the determinant of the metric g

multiplies the whole Lagrangian density. The case with ξ = 1
6 is the so-called conformal

coupling.
For the considered geometry, the above action can be simplified so that it allows the

Hamiltonian approach with the phase variables depending only on conformal time η. Due to
the required covariance of general relativity, the system is subject to constraints, which in our
case mean that the obtained Hamiltonian’s value is zero. However, we note that including an
additional matter component 	 is equivalent to considering other energy levels. Namely for
	 ∝ a−4 (which is the case for radiation) a constant is added to the Hamiltonian, thus imitating
its nonzero value. This is the justification for studying the systems integrability on a generic
energy hyper-surface.

From the observational point of view, the cosmological constant provides an explanation
for the current accelerating expansion of the universe (� cold dark matter model [22]), but a
better solution still is sought for. A real scalar field dubbed ‘quintessence’ with the so-called
slow rolling potential, which models the dark energy component has been extensively used for
that purpose [14, 68]. Realizations of the field itself include also Bose–Einstein condensate
of axions [25] or a phantom violating the energy principle [15].

Finally, scalar field could also be the mechanism behind the inflation [42, 43], which is
currently the most established and used scenario for the early Universe [13]. Recently, Komatsu
et al [39] have shown that latest observational data (WMAP, SNIa, Barion Oscillation Peak
and others) show that the model of chaotic inflation (which strictly speaking should be called
non-integrable or complex in the sense that we demonstrate in the present work) with the
quadratic potential remains a good fit (within the 95% confidence domain).

From the physical point of view, a universe filled with only one component seems simple
enough but it is not the case here. Chaotic scattering has been found in minimally coupled
fields [23], as has chaotic dynamics [48].

The first of our results is that minimally coupled fields are not integrable in the generic
case. There are however special families of the system’s parameters which leave the question
open. We give the appropriate conditions in the concluding section.

There are several physical reasons to study more than just minimally coupled fields. Early
works on chaotic inflation found the coupling constant ξ small or negative [30] but some argue
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[26] that the paradigm of inflation should be generalized to the case with a nonzero coupling
constant which should not be fine tuned close to zero.

The coupling could be generated by quantum corrections [10, 29], or from the
renormalization of the Klein–Gordon equation as described in [16]. The coupling constant
should be fixed by particle physics of the matter composing the scalar field, for example the
way ξ = 1/6 was found in the large N approximation to the Nambu–Jona–Lasimo model in
[34]. Non-minimally coupled fields are also interesting in the context of description of the
dark energy for which the ratio between the pressure and the energy density is less than −1.
Such a matter is called a phantom matter, and cannot be achieved by standard scalar fields
[27].

Conformally coupled fields were subject to more rigorous integrability analysis, as
opposed to minimally coupled ones, thanks to the natural form of their Hamiltonian. As
will be shown in the following section, the kinetic part is of natural form, albeit indefinite, and
the potential is polynomial (in the case of real fields).

Chaos has been studied in such fields by means of Lyapunov exponents, perturbative
approach, breaking up of the KAM tori [11, 17]. Also the Painlevé property [35] was
employed as an indicator of the system’s integrability.

Ziglin proved that the system given by (20) is not meromorphically integrable when
� = λ = 0 and k = 1 [67]. His methods were also used by Yoshida to homogeneous
potentials which is the case for the system when k = 0 [61–64]. Later, Yoshida’s results
were sharpened by Morales-Ruiz and Ramis [49], and used by the present authors in [44]
to obtain countable families of possibly integrable cases with some restrictions on λ and �.
Also recently, more conditions for integrability have been given in [12], although only for a
nonzero spatial curvature k and a generic value of energy, that is, when the particular solution
is a non-degenerate elliptic function defined on a nonzero-energy level.

Our work shows, that the conjecture of that paper is in fact correct—as shown in section
4—the conformal system is only integrable in two cases (with the above assumptions). We
extend the above results and show that for a generic energy value, a spatially flat (k = 0) the
universe is only integrable in four cases. Also, the particular case of zero energy is analysed
and new, simple conditions on the model parameters are found. Finally, we check that when
E = k = 0, the problem remains open, as the necessary conditions for integrability are
fulfilled.

When it comes to numerical studies of the problem, there are various results, most notably
chaotic behaviour [36], but also a fractal structure and chaotic scattering [59]. However, it
remains unclear whether the widely exercised complex rotation of the variables changes the
system’s integrability. Even for very simple systems it was shown [31] that there might exist
smooth integrals, which are not real analytic. This question is especially vital since our
Universe clearly has real initial conditions and dynamics.

The results obtained for the conformal coupling are much stronger than in the minimal
one. We manage to show, that the four cases with known first integrals are the only integrable
ones for the generic energy value.

The Hamiltonian of both these systems has indefinite kinetic energy part, and to cast it
into a positive-definite form a transition into imaginary variables is used. It has been done for
a conformally coupled field [36], but some authors, see, e.g. [54], argue that there are physical
limitations which forbid extending the solutions through singularities such as a = 0, and an
imaginary scale factor seems even less realistic.

We would like to stress that the complexification of the variables in our approach is not
to be connected with the physical evolution of the system into the imaginary values. The
behaviour of differential equations in the complex domain is a tool that allows for obtaining
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general results regarding its integrability (also real), as can be seen in the example of the
Painlevé analysis [35].

Despite the fact, that systems of the considered type were often called non-integrable,
there was seldom a rigorous proof of that proposition. However, the Liouvillian integrability
can be studied successfully, as we try to show in this article.

The authors are aware of one notable attempt at studying the problem in [21]; sadly, that
paper contains a serious mistake in the application of Yoshida’s theorem. The method used
requires rescaling by the energy of the system, which the authors of [21] take to be zero.
Thus, their theorem 3 (which contradicts one of the results presented here) is in fact false. The
zero-energy level usually requires a separate treatment, which we also present here.

The plan of the paper is the following. In the following section we describe the mentioned
two cosmological models: of minimally coupled field and conformally coupled field starting
from a general description up to the Hamiltonian formulation of these models. Section 3
is devoted to the introduction of the Morales–Ramis theory. This is our tool to prove the
announced rigorous integrability results for these models. In sections 4 and 5 all details of
integrability analysis are presented. For the convenience of readers all integrability results are
recapitulated in section 6.

2. Physical system’s setup

2.1. Minimally coupled field

The general action (2) now includes the following parts:

I = c4

16πG

∫ [
R − 2� − 1

2

(
∇αψ̄∇αψ +

m2

h̄2 |ψ |2
)] √−g d4x. (3)

Using the coordinates of (1), the Lagrangian becomes

L = 6(äa + Ka2) +
1

2
|ψ̇ |2a2 − m2

2h̄2 a4|ψ |2 − 2�a4, (4)

with the dot denoting the derivative with respect to time. We also dropped a coefficient which
includes some physical constants and the part of the action related to the spatial integration.

Next we subtract a full derivative 6(ȧa)̇, and use the polar parametrization for the scalar
field ψ = √

12φ exp(iθ) to get

L = 6(Ka2 − ȧ2) + 6a2(φ̇2 + φ2θ̇2) − 6
m2

h̄2 a4φ2 − 2�a4, (5)

and obtain the Hamiltonian

H = 1

24

(
1

a2
p2

φ − p2
a +

1

a2φ2
p2

θ

)
− 6Ka2 + 2�a4 + 6

m2

h̄2 a4φ2, (6)

with

pa = −12ȧ, pφ = 12a2φ̇, pθ = 12a2φ2θ̇ . (7)

Note that the elliptic constraints of general relativity require that the above Hamiltonian is
identically zero—this is the so-called Friedmann equation, although it is not a dynamical
evolution equation but rather a conservation law [47].

Since θ is a cyclic variable, the corresponding momentum is conserved so we substitute
p2

θ = 2ω2. To make all the quantities dimensionless, we make the following rescaling

m2 → m2h̄2|K|, � → 3�|K|,
(8)

ω2 → 72ω2|K|, p2
a → 72p2

a|K|, p2
φ → 72p2

φ|K|.
4



J. Phys. A: Math. Theor. 41 (2008) 465101 A J Maciejewski et al

There is no need to change the variables a and φ along with their momenta, as this is really
changing the time variable η, and thus the derivatives to which the momenta are proportional.
This results also in dividing the whole Hamiltonian by 6

√
2|K| to yield

√
2H = 1

2

(
−p2

a +
1

a2
p2

φ

)
− K

|K|a
2 + �a4 + m2φ2a4 +

ω2

a2φ2
. (9)

If the spatial curvature is zero, any of the other dimensional constants can be used for this
purpose, so without the loss of generality we take the right-hand side to be the new Hamiltonian

H = 1

2

(
−p2

a +
1

a2
p2

φ

)
− ka2 + �a4 + m2φ2a4 +

ω2

a2φ2
, (10)

and in all physical cases, k ∈ {−1, 0, 1}, ω2 � 0,m2 ∈ R,� ∈ R,H = 0. We extend the
analysis somewhat assuming that the Hamiltonian might be equal to some nonzero constant
E ∈ R. We will see later, that our analysis includes also the possibility of these coefficients
being complex.

Note that for a massless (m = 0) field, the system is already solvable, as shown in
appendix A

From this point on, we take ω = 0, which means the phase is constant. Since the model
has U(1) symmetry, we can always make such a field real with a rotation in the complex ψ

plane. In other words, we will be investigating a real scalar field only. The reason why we
restrict the problem is the following: the method employed requires an explicit (non-constant)
particular solution, and the only one known requires φ = 0; which is a singularity of the full
Hamiltonian.

Under the above assumption the Hamilton’s equations of system (10) are

ȧ = −pa, ṗa = 2ka − 4a3(� + m2φ2) +
1

a3
p2

φ,

(11)
φ̇ = 1

a2
pφ, ṗφ = −2m2a4φ.

We note that there is an obvious particular solution, which describes an empty universe:
φ = pφ = 0, a = q, pa = −q̇. Thanks to the energy integral E = 1

2 q̇2 + kq2 − �q4, it can
be identified with an appropriate elliptic function.

2.2. Conformally coupled scalar fields

The procedure of obtaining the Hamiltonian is the same as in the case of minimally coupled
fields, only this time the action is

I = c4

16πG

∫ [
R − 2� − 1

2

(
∇αψ̄∇αψ +

m2

h̄2 |ψ |2 +
1

6
R|ψ |2

)
− λ

4!
|ψ |4

] √−g d4x, (12)

where an additional coupling to gravity through the Ricci scalar R, and a quartic potential term
with constant λ are present, as opposed to the minimal scenario. We keep the same notation
as before and express the involved quantities in the same coordinates and get

L = 6(äa + Ka2) − 1

2
äa|ψ |2 +

1

2
|ψ̇ |2a2 − m2

2h̄2 a4|ψ |2 − λ

4!
a4|ψ |4 − 2�a4 − 1

2
Ka2|ψ |2,

(13)

from which we remove a full derivative, and introduce new field variables ψ =√
12φ exp(iθ)/a to obtain

L = 6

[
φ̇2 + φ2θ̇2 − ȧ2 + K(a2 − φ2) − m2

h̄2 a2φ2 − �

3
a4 − λφ4

]
. (14)

5
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The associated Hamiltonian is

H = 1

24

(
p2

φ +
1

φ2
p2

θ − p2
a

)
+ 6

[
K(φ2 − a2) +

m2

h̄2 a2φ2 + λφ4 +
�

3
a4

]
, (15)

with

pa = −12ȧ, pφ = 12φ̇, pθ = 12φ2θ̇ . (16)

We can see that θ is a cyclic variable because we took the potential to depend on the modulus
of ψ only, so we write a constant instead of the respective momentum pθ = ω.

Finally, we express everything in dimensionless quantities, rescaling the constants, but
also the time and momenta (as they are in fact time derivatives), which results in rescaling the
whole Hamiltonian. We do this as follows:

m2 → m2h̄2|K|, � → 3

2
�|K|, λ → 1

2
λ|K|,

(17)
p2

x → 144p2
x |K|, H → 1

12
√|K|H,

when K �= 0, and using another of the dimensional constants otherwise. Thus, eliminating a
multiplicative constant, the Hamiltonian reads

H = 1

2

(
p2

φ − p2
a

)
+

1

2

[
k(φ2 − a2) +

ω2

φ2
+ m2a2φ2

]
+

1

4
(�a4 + λφ4), (18)

with k ∈ {−1, 0, 1} (K = k|K|); ω, λ, �, m2 ∈ R, and H = 0 in any physically possible
setup. Exactly as in the previous case, the zero value of the energy is a consequence of the
constraints introduced by general relativity.

We note that for m = 0 the system decouples, and is trivially integrable as shown in
appendix B. That is why we will assume m �= 0 henceforth. We will also take ω = 0, that is,
consider a scalar field equivalent to a real field after a unitary rotation in the complex ψ plane.

We change the field variables into the standard q and p ones for further computation,
taking

a = q1, pa = p1,
(19)

φ = q2, pφ = p2.

The Hamiltonian is then

H = 1
2

(−p2
1 + p2

2

)
+ V,

(20)
V = 1

2

[
k
(−q2

1 + q2
2

)
+ m2q2

1q2
2

]
+ 1

4

(
�q4

1 + λq4
2

)
.

3. Differential Galois obstructions to integrability

Let (M,ω) be a 2n-dimensional complex analytic symplectic manifold. For a meromorphic
function H : M → C, we denote by VH the Hamiltonian vector field generated by H and let
us consider Hamiltonian equations

dx

dt
= vH (x), t ∈ C, x ∈ M. (21)

We assume that a non-constant particular solution ϕ(t) of system (21) is known. Its maximal
analytic continuation defines a Riemann surface � with the local coordinate t.

Linearization of (21) around ϕ(t) yields variational equations of the following form:

ξ̇ = A(t)ξ, A(t) = ∂vH

∂x
(ϕ(t)), ξ ∈ T�M. (22)

6
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Thanks to the Hamiltonian character of the system, the dimension of variational equations
can be reduced by two. First we use the fact that a Hamiltonian system has at least
one first integral namely Hamiltonian H, thus we can restrict system (21) to the manifold
Mε = {x ∈ M|H(x) = ε}, where ε = H(ϕ(t)). Then we consider the induced system on the
normal bundle N := T�Mε/T � of �

η̇ = Ã(t)η, Ã(t)η = π�(T (v)(π−1ξ)), η ∈ N. (23)

Here π : T�Mε → N is the projection. The system of 2n − 2 equations obtained in this way
is called the normal variational equations.

We can consider the entries of matrices A and Ã as elements of field K := M(�) of
meromorphic functions on �. This field with differentiation with respect to t as a derivation is
a differential field. Only constant functions from K have a vanishing derivative, so the subfield
of constants of K is C.

It is obvious that solutions of (22) are not necessarily elements of Kn. The fundamental
theorem of the differential Galois theory guarantees that there exists a differential field F ⊃ K
such that it contains n linearly independent (over C) solutions of (22). The smallest differential
extension F ⊃ K with this property is called the Picard–Vessiot extension. A group G of
differential automorphisms of F which does not change K is called the differential Galois
group of equation (22). It can be shown that G is a linear algebraic group. Thus, it is a union
of disjoint connected components. One of them containing the identity is called the identity
component of G.

Differential Galois theory was created as a tool to answer the question: whether a given
system of linear equations possesses a solution that can be written in a closed form, i.e. is it
solvable? The main theorem of this theory states that the necessary condition of solvability
in the class of Liouvillian functions (i.e. by generalized quadratures) is solvability of its
differential Galois group. We can try to connect the integrability of the original nonlinear
system with solvability of its variational equations. However, there is a more direct connection.
Namely, in eighties of twentieth century Ziglin observed that if system (21) has k � 2
functionally independent meromorphic first integrals, then variational equations (22) and
also normal variational equations (23) possess k rational first integrals and moreover the
monodromy group (that is a subgroup of differential Galois group) has the same number of
invariants [65, 66]. Fourteen years later the relation between first integrals and invariants
of the differential Galois group was analysed by Baider, Churchill, Rod and Singer in [19].
However the final formulation of relations between integrability of Hamiltonian systems and
properties of the differential Galois group of variational equations due to Morales and Ramis
[49, 51] where in their analysis not only the presence of first integrals is taken into account
but also the consequences of the involution of first integrals. Their main theorem that will be
the crucial tool of our analysis is the following.

Theorem 1 (Morales-Ruiz and Ramis [49]). Assume that a Hamiltonian system is
meromorphically integrable in the Liouville sense in a neighbourhood of a phase curve �

and irregular singularities of the variational equations along � do not correspond to phase
points at the infinity. Then the identity component of the differential Galois group of the
(normal) variational equations associated with � is Abelian.

Let us explain assumptions concerning variational equations in the above theorem. Usually
the Riemann surface corresponding to the phase curve � is not compact so we compactify
it adding some points. Typically these points correspond to equilibria or infinite points. In
the later case we have to add these points to the phase space, i.e, we have to extend our
original system into a ‘bigger’ phase space. For the extended system the requirement that the

7
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considered first integrals are meromorphic in a neighbourhood of the phase curve has strong
restrictions: they have to be meromorphic at the infinity. Thus if we remove the assumption
about irregular singular points we have to restrict the class of first integrals. Below we give
a version of the Morales–Ramis theorem without assumptions concerning the regularity of
variational equations, which is adapted to Hamiltonian systems considered in this paper.

Theorem 2 (Morales-Ruiz and Ramis [49]). Assume that a Hamiltonian system defined in
a linear symplectic space is generated by a rational Hamiltonian function and is rationally
integrable in the Liouville sense. Then the identity component of the differential Galois group
of the (normal) variational equations associated with � is Abelian.

In applications the most difficult part is to check the abelianity of variational equations.
Fortunately, thanks to the separation of variational equations into two parts, we can restrict to
its normal part and in this way reduce the dimension of the system. Furthermore, because the
abelian differential Galois group implies in particular that this group is solvable, thus we can use
directly all solvability results concerning some known equations such as, e.g. hypergeometric
equation, Whittaker equation, Lamé equations. In addition, for a linear second-order equation
with rational coefficients there exists the closed algorithm, the so-called Kovacic algorithm
[40], that decides whether equation is solvable in a class of Liouvillian function, yields explicit
forms of solutions as well as determines the differential Galois group. This is achieved by
providing necessary conditions for solvability of the appropriate Galois group. The equations
in question have as their Galois group an algebraic subgroup of SL2(C), and since there
are only three possibilities of those having a solvable identity component, the procedure is
arranged in three cases. They consist of analysing the equation’s singular points and finding
an appropriate polynomial and an algebraic function of possible degrees 2, 4, 6 or 12; used to
construct solutions.

This means that theorem 1 yields really an effective tool for proving the non-integrability
and distinguishing the cases suspected about integrability in the case when the Hamiltonian
depends on some physical parameters, for examples of applications see references in [52].

It can happen that a considered system satisfies all conditions of the above theorem, but
nevertheless it is not integrable. It is nothing strange as this theorem gives only necessary
conditions for the integrability. This shows a need of stronger necessary conditions for the
integrability. They were developed by Simó, Morales and Ramis [49, 50, 52] and are based
on higher order variational equations (HVE’s).

Theorem 3. Assume that a Hamiltonian system is meromorphically integrable in the Liouville
sense in a neighbourhood of the analytic phase curve �, and the infinity is a regular singular
point of the variational equations along �. Then the identity component of the differential
Galois group of kth variational equations along � is Abelian for all k � 1.

For variational equations (VE’s) of degree greater than one there is no more the splitting of
variational equations into two parts: normal (NVE’s) and tangential (TVE’s) and there is no
reduction of system’s dimension and the analysis of the differential Galois group of the whole
system of variational equations is more involved. Fortunately, in the case when variational
equations are the product of Lamé equations with Lamé–Hermite solutions Morales-Ruiz
proved in [49, 50, 52] that the absence of logarithmic terms in solutions of higher order
variational equations is a necessary condition of abelianity of the identity component of their
differential Galois groups.

Interested readers can find more detailed and complete presentation of Morales–Ramis
theory in [19, 49, 51, 65, 66] and of differential Galois theory in [8, 37, 49, 56, 58].

8
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4. Analysis of the minimally coupled field

4.1. � = 0 case

The system now has the following form:

ȧ = −pa, ṗa = 2ka − 4m2a3φ2 +
1

a3
p2

φ,

(24)
φ̇ = 1

a2
pφ, ṗφ = −2m2a4φ.

Using the aforementioned particular solution, for which the constant energy condition becomes
E = 1

2 q̇2 + kq2, we have as the variational equations⎛⎜⎜⎝
ȧ(1)

ṗ(1)
a

φ̇(1)

ṗ
(1)
φ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 −1 0 0

2k 0 0 0
0 0 0 q−2

0 0 −2m2q4 0

⎞⎟⎟⎠
⎛⎜⎜⎝

a(1)

p(1)
a

φ(1)

p
(1)
φ

⎞⎟⎟⎠ . (25)

The normal part of the above system, after eliminating the momentum variation p
(1)
φ , and

writing x for φ(1), is

qẍ + 2q̇ẋ + 2m2q3x = 0, (26)

which we further simplify like before by taking z = q as the new independent variable, and
using the energy condition to get

z(E − kz2)x ′′ + (2E − 3kz2)x ′ + m2z3x = 0. (27)

We check the physical hypersurface of E = 0. This requires k �= 0 for otherwise the special
solution would become an equilibrium point. Introducing a new pair of variables

w(s) = w

(
2

m√
k
z

)
= z3/2x(z), (28)

we finally get

d2w

ds2
=

(
1

4
− κ

s
+

4μ2 − 1

4s2

)
w, (29)

with μ = ±1 and κ = 0. This is the Whittaker equation, and its solutions are Liouvillian
if, and only if,

(
κ + μ − 1

2 , κ − μ − 1
2

)
are integers, one of them being positive and the other

negative [49]. As this is not the case here, this finishes the proof for k �= 0. We recall, that
because of the irregular singular point s = ∞, this rules out only the rational first integrals.

Non-integrability on one energy level means no global integrability, for the existence of
another integral for all values of E would imply its existence on E = 0. However, there might
exist additional integrals for only some, special values of the energy. It is straightforward to
check with the use of Kovacic’s algorithm [40], that this is not true here. For our equation, in
cases 1 and 2 of the algorithm, there is no appropriate integer degree of a polynomial needed
for the construction of the solution, and case 3 cannot hold, because of the orders of the
singular points of the equation.

If k = 0, a change of the dependent variable to w(z) = zx(z), reduces equation (27) to

Ew′′ + m2z2w = 0, (30)

which is known not to possess Liouvillian solutions [40].
We note that when � = E = k = 0, the system can be reduced to a two-dimensional one.

In fact, the reduction is still possible when � �= 0, so we choose to present in the following
section.

9
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4.2. � �= 0 case

We use the nonzero constant � to rescale the system as follows:

a = q1√
�

, pa = p1√
�

,

(31)
φ = q2, pφ = p2

�
,

so that the equations become

q̇1 = −p1, ṗ1 = 2kq1 − 4q3
1

(
1 + bq2

2

)
+

1

q3
1

p2
2,

q̇2 = 1

q1
2
p2, ṗ2 = −2bq2q

4
1 ,

(32)

where b = m2/�. The energy integral, for the previously defined particular solution, now
reads E = E� = 1

2 q̇2 + kq2 − q4, where q has been rescaled according to (31).
As before, we are interested in the variational equations, which read⎛⎜⎜⎜⎜⎜⎝

q̇
(1)
1

ṗ
(1)
1

q̇
(1)
2

ṗ
(1)
2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 −1 0 0

2(k − 6q2) 0 0 0

0 0 0 q−2

0 0 −2bq4 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

q
(1)
1

p
(1)
1

q
(1)
2

p
(1)
2

⎞⎟⎟⎟⎟⎟⎠ , (33)

and writing x for q
(1)
2 , and y for p

(1)
2 . The normal part is

ẋ = 1

q2
y,

ẏ = −2bq4x,

(34)

or alternatively

ẍ + 2
q̇

q
ẋ + 2bq2x = 0. (35)

4.2.1. E = 0. We first pick the particular solution lying on the zero-energy level, as the
global integrability implies the integrability for this particular value of the Hamiltonian. It is
important to remember, however, that the converse is not true.

The normal variational equation is cast into a rational form by changing the independent
variable to z = q2/k (for k �= 0 which implies k2 = 1), and using the energy first integral. It
then becomes a hypergeometric equation

x ′′ +
5z − 4

2z(z − 1)
x ′ +

b

4z(z − 1)
x = 0, (36)

with the respective characteristic exponents

z = 0, ρ = −1, 0

z = 1, ρ = 0, 1
2

z = ∞, ρ = 1
4 (3 − √

9 − 4b), 1
4 (3 +

√
9 − 4b).

(37)

By Kimura’s theorem [38], the solutions of equation (36) are Liouvillian if, and only if
9 − 4b = (2p − 1)2, p ∈ Z. As before, this means that for the global integrability this
condition must be satisfied.

For k = 0 the solution of NVE is x1,2 = q−2ρ∞1,2 , and the reduction to a two-dimensional
system is possible, as mentioned before.

10
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4.2.2. E �= 0. The special solution, is now directly connected to the Weierstrass ℘ function,
for if we introduce a new dependent variable v with

q2 = 1

2
v +

k

3
, (38)

the energy integral implies that it satisfies the equation

v̇2 = 4v3 − g2v − g3, (39)

where

g2 = 16

3
(k2 − 3E), g3 = 32

27
k(2k2 − 9E), (40)

and the discriminant � = 1024E2(k2 − 4E), which we take as nonzero to consider the generic
case. Thus, taking w = q

(1)
2 q, and eliminating p

(1)
2 as before, the normal variational equation

reads

ẅ = [A℘(η; g2, g3) + B]w, (41)

with A = 2−b and B = − 2
3k(1+b). This is the Lamé differential equation, whose Liouvillian

solutions are known to fall into three mutually exclusive cases, which are exactly those of
Kovacic’s algorithm:

(i) The Lamé–Hermite case, with A = n(n + 1) = 2 − b, n ∈ N. This implies that
9 − 4b = (2n + 1)2. The case with n = 1 already known to be integrable because b = 0
represents the massless field.

(ii) The Brioschi–Halphen–Crawford case, where necessarily n is half an integer, i.e.
n + 1

2 = l ∈ N, and as before 9 − 4b = (2n + 1)2 = (2l)2.
(iii) The Baldassarri case, with n+ 1

2 ∈ 1
3 Z∪ 1

4 Z∪ 1
5 Z\Z, and additional algebraic restrictions

on B, g2, and g3.

In the Lamé–Hermite case we have infinite number of values of b = 2 − n(n + 1), n ∈ N,
for which the necessary conditions for the integrability given by the Morales–Ramis theorem
1 are satisfied. In order to obtain stronger result we need to apply more restrictive necessary
conditions. Such conditions are given by higher order variational equations, see [52] for
detailed exposition. Here we explain this technique on the considered problem and we will
follow [45].

At the beginning, it is convenient to change the variables in equations (32) in the following
way:

q1 = w1, p1 = −w2,

q2 = w3

w1
, p2 = w1w4 − w2w3.

(42)

Let

ẇ = W(w), w = (w1, w2, w3, w4), (43)

be the system (32) written in the new variables. The advantage of new coordinates is that now
the variational equations split into a direct product of two Lamé equations⎛⎜⎜⎜⎜⎜⎝

ẇ
(1)
1

ẇ
(1)
2

ẇ
(1)
3

ẇ
(1)
4

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 0 0

A1℘(η) + B1 0 0 0

0 0 0 1

0 0 A2℘(η) + B2 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

w
(1)
1

w
(1)
2

w
(1)
3

w
(1)
4

⎞⎟⎟⎟⎟⎟⎠ , (44)

11
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where ℘(η) is the one given by equation (39), and

A1 = 6, B1 = 2k,

A2 = n(n + 1), B2 = 2
3k(n2 + n − 3).

(45)

To derive the higher order VE’s we substitute into equation (43) the infinite formal series

w = ϕ(η) + εw(1) + ε2w(2) + ε3w(3) + · · · , (46)

where ϕ is the particular solution, and get

ẇ(j) = W ′(ϕ(η))w(j) + fj (w
(1), . . . , w(j−1)), j = 1, 2, . . . , (47)

where W ′(ϕ(η)) is the matrix of right-hand sides in (44), and fj (w
(1), . . . , w(j−1)) are vectors

obtained from the Taylor expansions of components of W(w). In particular we have

f1 = 0,

f2 = 1
2W ′′(ϕ(η))(w(1), w(1)),

f3 = 1
6W ′′′(ϕ(η))(w(1), w(1), w(1)) + W ′′(ϕ(η))(w(2), w(1)),

(48)

and so on. For j = 1 equation (44) is recovered. Although w(1), . . . , w(j−1) enter polynomially
in the right-hand sides of j th variational equations (47), there exists an appropriate framework
to define their differential Galois group. In [52] it was proved that if the system is integrable,
then the identity component G◦

j of the differential Galois group Gj of j th variational equations
is Abelian. Generally it is very difficult to determine Gj for j > 1. However, in a case when
the first variational equations are a product of two Lamé equations having infinite differential
Galois group we have an effective method to decide whether G0

j is Abelian. Namely, if a
logarithmic term appears in local solution around η = 0 of j th variational equations, then G0

j

is not Abelian, see [52, 53] for details.
The calculations proceed as follows. The solution of (47) is given by

w(j) = X

∫
X−1fj dη, (49)

where fj = fj (w
(1), . . . , w(j−1)) and X is the fundamental matrix of the homogeneous system

(i.e. the first-order VE (44), so that

Ẋ = W ′(ϕ(t))X, det X �= 0. (50)

We took

X =

⎛⎜⎜⎜⎜⎝
v1 v2 0 0

v̇1 v̇2 0 0

0 0 v3 v4

0 0 v̇3 v̇4

⎞⎟⎟⎟⎟⎠ , (51)

with

v1 = η3 +
k

7
η5 + · · · , v2 = − 1

5η2
+

k

15
+ · · · ,

v3 = ηn+1 +
k(n2 + n − 3)

6n + 9
ηn+3 + · · · , v4 = − 1

(2n + 1)ηn
+

k(n2 + n − 3)

(2n + 1)(6n − 3)ηn−2
+ · · · .

(52)

Next, we take as the solution of the first-order VE

w(1) = (0, 0, v4, v̇4). (53)

12
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Then we fix n = 2 and solve the second-order VE and we obtain the integrand of (49) for
j = 3 to be

X−1f3 =
(

0, 0,
54

625η8
− 44k

625η6
+ · · · , 54

125η3
− 128k

875η
+ · · ·

)
, (54)

which produces a logarithm in w(3). If k = 0, one has to find solutions of fourth-order VE to
get

X−1f5 =
(

0, 0,− 3618

109 375η10
− 1272E

21 875η6
+ · · · ,− 3618

21 875η5
− 1536E

21 875η
+ · · ·

)
, (55)

which proves the non-integrability, since we assumed E �= 0.
This behaviour does not change as we increase n, although it was checked only for 10

consecutive values. We thus conjecture that for b = 2 − n(n + 1) with integer n > 1 the
system is not integrable. The procedure described is correct under the assumption that the
differential Galois group of the normal variational equations is not finite. We discuss this point
in appendix C, and justify that except countable many values of energy the group is not finite.

In the Brioschi case, there is another additional condition for the integrability: the so-
called Brioschi determinant Ql is zero [49]. Unfortunately, there is no closed formula for Ql

for general l, but analysing the first few values we note a pattern

Q1 = −3

2
k,

Q2 = −3

4
(5k2 − 16E),

Q3 = −9

8
k(35k2 − 192E),

Q4 = − 5

16
(2835k4 − 21 600k2E − 48 384E2),

Q5 = −4725

32
k(231k4 − 2240k2E − 16 384E2),

Q6 = −8505

64
(15 015k6 − 176 400k4E − 2802 432k2E2 − 1126 400E3).

(56)

When k = 0,Ql is zero for odd l, and proportional to energy, which is not zero, for even l.
When k �= 0, so that k2 = 1, each Ql is a polynomial in E , and that gives at most a finite
number of energy values for which Ql = 0 and the system is potentially integrable. We, again,
conjecture that if the system is integrable (with this subsection’s assumptions) and k = 0, then
necessarily n + 1

2 is odd, and that if k2 = 1, then it is not integrable on a generic energy level.
The Baldassarri case can also be studied in more detail by means of the modular function

j = g3
2

g3
2 − 27g2

3

= 4(k2 − 3E)3

27(k2 − 4E)E2
=

⎧⎨⎩
4(1 − 3E)3

27(1 − 4E)E2
for k2 = 1,

1 for k = 0.

(57)

A theorem by Dwork [49] states that the number of pairs (j, B) is at most finite in integrable
cases. Since j depends on the energy for nonzero k, and B depends on m2, it means that a
generic energy level is not integrable for a given value of m2.

4.2.3. E = k = 0. As mentioned in section 4.1 in this case we can transform the system to
a two-dimensional one. In order to do that, time needs to be changed from the conformal to

13
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the cosmological one dη → dt = a dη in the original equations (11). We then take as the new
momenta the Hubble’s function a and the derivative of φ

h := 1

a

da

dt
= −pa

a2
,

ω := dφ

dt
= pφ

a3
.

(58)

(This ω is not to be confused with the one introduced in section 2.) Accordingly we have

da

dt
= ah,

dφ

dt
= ω,

dh

dt
= 4� + 4m2φ2 − ω2 − 2h2,

dω

dt
= −2m2φ − 3ωh.

(59)

Thus, we are left with a dynamical system in the (h, φ, ω) space, as a decouples. Furthermore,
the energy integral is now

0 = 1
2a4(2� + ω2 + 2m2φ2 − h2), (60)

so for a(t) which is not trivially zero, it gives a first integral on the reduced space. Choosing
an appropriate variable α, suggested by the form of this integral

φ =
√

h2 − 2�√
2m

sin(α),

ω =
√

h2 − 2� cos(α),

(61)

we finally obtain

dα

dt
=

√
2m + 3h sin(α) cos(α),

dh

dt
= −3(h2 − 2�) cos2(α).

(62)

The problem of such reduction was also discussed in [28]. It is argued that there can be no
chaos in this system, but its integrability—which would be one more first integral—remains
unresolved.

5. Analysis of the conformally coupled field

5.1. Known integrable families

There are four known cases when the system has an additional first integral, functionally
independent of the Hamiltonian. They were found by applying the so-called ARS algorithm
basing on the Painlevé analysis [1]. Table 1 summarizes those results.

And the respective integrals of the systems are

(1)

{
H = 1

2

(
p2

2 − p2
1

)
+ k

2

(
q2

2 − q2
1

) − m2

12

(
q4

1 − 6q2
1q2

2 + q4
2

)
,

I = p1p2 + 1
3

(
m2

(
q2

2 − q2
1

) − 3k
)
,

(2)

{
H = 1

2

(
p2

2 − p2
1

)
+ k

2

(
q2

2 − q2
1

) − m2

4

(
q2

2 − q2
1

)2
,

I = q1p2 + q2p1,
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Table 1. Known integrable cases for the conformally coupled field.

Case k � m2

(1) 0, ±1 � = λ m2 = −3�

(2) 0, ±1 � = λ m2 = −�

(3) 0 � = 16λ m2 = −6λ

(4) 0 � = 8λ m2 = −3λ

(3)

{
H = 1

2

(
p2

2 − p2
1

) − m2

24

(
16q4

1 − 12q2
1q2

2 + q4
2

)
,

I = (
q1p2 + q2p1

)
p2 + m2

6 q1q
2
2

(
q2

2 − 2q2
1

)
,

(4)

{
H = 1

2

(
p2

2 − p2
1

) − m2

12

(
8q4

1 − 6q2
1q2

2 + q4
2

)
,

I = p4
2 + m2q2

2
3

[
4q1q2p1p2 + q2

2p2
1 − (

q2
2 − 6q2

1

)
p2

2 + 1
12q2

2

(
q2

2 − 2q2
1

)2]
.

(63)

In this work, we will show, that the above are the only integrable cases, when m �= 0. An
important point to note is that there is a complete symmetry with respect to interchanging �

and λ. It is a consequence of the fact, that there exists a canonical transformation of the form

p1 → ip1, q1 → −iq1,

p2 → p2, q2 → q2,
(64)

that changes the Hamiltonian into

H = 1
2

(
p2

1 + p2
2

)
+ 1

2

[
k
(
q2

1 + q2
2

) − m2q2
1q2

2

]
+ 1

4

(
�q4

1 + λq4
2

)
, (65)

which is the same after swapping the indices. We shall use this form of H, where the kinetic part
is in the natural form, to make the use of some already existing theorems more straightforward.

5.2. Integrability of the reduced problem

It is possible to give stringent conditions for integrability of the system, by considering a
reduced Hamiltonian. Namely, we can separate potential V into homogeneous parts of degree
2 and 4

V = Vh2 + Vh4,

Vh2 = 1
2k

(
q2

1 + q2
2

)
,

Vh4 = 1
4

(−2m2q2
1q2

2 + �q2
1 + λq4

2

)
.

(66)

The following fact is crucial in our considerations: if a potential V is integrable then its
highest order as well as the lowest order parts are also integrable. This fact needs some
additional justification as its several known proofs are not correct. In fact, consider potential
V = Vmin+· · ·+Vmax, where Vmin and Vmax are homogeneous parts of V = V (q), q ∈ C

n of the
lowest and the highest degree, respectively. Assume that it admits meromorphic commuting
independent first integrals F1, . . . , Fn. If Fi = Ri/Si for certain holomorphic functions Ri

and Si , then we set fi = ri/si , where ri and si are the lowest order terms of expansions of Ri

and Si into the power series. It is easy to show that fi are first integrals of Vmin. However, we
cannot claim that they are functionally independent. Fortunately we can use in the described
situation the Ziglin Lemma [65] which guarantees that we can always choose first integrals
Fi in such a way that their lading terms fi are functionally independent. A more complicated
situation arises with the integrability of Vmax. Here we have to assume that V is integrable
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with rational first integrals in order to distinguish their highest order terms. Then we need also
an appropriate version of the Ziglin Lemma. Proofs of these facts will be published elsewhere.

In our case if V given by (66) is integrable then Vh2 and Vh4 must also be integrable.
Vh2 is the potential of the two-dimensional harmonic oscillator, thus, it is trivially integrable.
However, the homogeneous part Vh4 gives strong integrability restrictions for the whole
potential V . We will call Vh4 the reduced potential and denote it by V̂ .

Thus we effectively set k = 0, and are now in position to exercise known theorems
concerning homogeneous potentials depending on two variables. In particular the complete
analysis for degree 4 has been completed in [45].

In order to identify our potential with some of the list given in that paper, we have to
check how many Darboux points there exist, and what are the values of parameters �, λ and
m that give potentials equivalent to particular families.

We say that a nonzero point (q1, q2) = d is a Darboux point of the potential V̂ (q1, q2)

when it satisfies the equation

V̂ ′(d) = γd, (67)

where γ ∈ C
∗ = C \ {0}. Such a point corresponds to a particular solution of the form

q(η) = f (η)d, p(η) = ḟ (η)d, (68)

with f (η) satisfying a differential equation that for a potential of degree 4 takes the form

f̈ (η) = −γf (η)3. (69)

As explained in section 3, particular solutions allow for studying the variational equations
along them, and yield necessary conditions for the existence of additional first integrals.
However, the major simplification discovered in [45] is that additionally there is only a finite
number of parameters’ sets (or non-equivalent potentials) corresponding to integrable cases.

Following the cited paper’s exposition and notation, we take I4,2 and I4,3 to be the
sets of integrable homogeneous potentials of degree 4 with 2 and 3 simple Darboux points,
respectively. We recall also four characteristic potentials thereof

V3 = 1
4aq4

1 + 1
3bq3

1q2 + 1
4

(
q2

1 + q2
2

)2
,

V4 = 1
4aq4

1 + q4
2 ,

V5 = 4q4
1 + 3q2

1q2
2 + 1

4q4
2 ,

V6 = 2q4
1 + 3

2q2
1q2

2 + 1
4q4

2 ,

(70)

where a and b denote (for the sake of this paragraph) arbitrary complex numbers.
We find that our potential has:

(i) Four simple Darboux points, when �(m2 + �)(m2 + λ) �= 0, and �λ �= m4. The only
integrable cases are:

(a) λ = � = − 1
3m2 (V̂ is equivalent to V4),

(b) λ = − 8
3m2, � = − 1

6m2 (V̂ is equivalent to V5),
(c) λ = − 8

3m2, � = − 1
3m2 (V̂ is equivalent to V6).

(ii) Three simple Darboux points, when � = 0, and λ(m2 + λ) �= 0. There are no integrable
families here as I4,3 = ∅.

(iii) Two simple Darboux points, when either � = m4

λ
and λ(m2 + λ) �= 0, or � = λ = 0.

Again, no integrable families are present here because I4,2 = ∅.
(iv) A triple Darboux point, when � = −m2. Additionally there is a simple Darboux point

when λ �= 0. The potential is equivalent to V3 and is only integrable when λ = −m2.
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There are two immediate implications that follow. First, that the main system itself with
k = 0 is only integrable in those four cases, and the respective first integrals are known, as
given in the table. Second, as was shown in [33] those cases are the only ones which could
be integrable when k �= 0. This happens because the integrability of the full potential implies
the integrability of the homogeneous parts of the maximal and minimal degree (the latter is
trivially solvable in our case).

As the table shows, when the potential is equivalent to V3 (or, to be precise, its integrable
subcase) or V4, the second first integral is known; but V5 and V6 only have known first integrals
with zero curvature. And as was shown in [12], for k = 1, the values of � and λ are those
of V5 or V6 forbid integrability. This is easily extended to the k = −1 case, since after the
change of variables

qj → eiπ/4qj , pj → e−iπ/4pj , j = 1, 2, (71)

we obtain a system with the sign of k changed, but the ratios m2/� and m2/λ the same. Thus,
concerning the conjecture of the quoted paper, our results for k �= 0 enable us to state, that it
is true, when the rational integrability is considered.

However, the above considerations assume that the energy value is generic, so that the
particular solution is a non-degenerate elliptic function. As stressed before, this does not
preclude the existence of an additional first integral on the physically crucial zero-energy
level.

5.3. Integrability on the zero-energy level

We choose not to investigate the Darboux points, but the variational equations directly, as they
are considerably simpler in this case. The Hamiltonian equations of (20) are

q̇1 = p1, ṗ1 = −kq1 + m2q1q
2
2 − �q3

1 ,

q̇2 = p2, ṗ2 = −kq2 + m2q2
1q2 − λq3

2 ,
(72)

and they admit three invariant planes as was shown in [44]. They are

�k = {(q1, q2, p1, p2) ∈ C
4|qk = 0 ∧ pk = 0}, k = 1, 2,

�3 = {(q1, q2, p1, p2) ∈ C
4|q2 = αq1 ∧ p2 = −αp1}, α2 = m2 + �

m2 + λ
.

(73)

Obviously two particular solutions are

{q1 = p1 = 0, q2 = q2(η), p2 = q ′
2(η)}, 0 = 1

2

(
p2

2 + kq2
2 +

λ

2
q4

2

)
,

{q2 = p2 = 0, q1 = q1(η), p1 = q ′
1(η)}, 0 = 1

2

(
+p2

1 + kq2
1 +

�

2
q4

1

)
,

(74)

and in order to find the third particular solution we make a canonical change of variables

(q1, q2, p1, p2)
T = B(Q1,Q2, P1, P2)

T , (75)

where symplectic matrix B has the block structure

B =
(

A O

O A
T

)
, A =

(−b −a

−a b

)
, O =

(
0 0
0 0

)
, (76)

and a and b are defined by

a =
√

m2 + �

2m2 + λ + �
, b =

√
m2 + λ

2m2 + λ + �
. (77)

17



J. Phys. A: Math. Theor. 41 (2008) 465101 A J Maciejewski et al

Let us introduce five quantities

α1 = 2m2 + λ + �, α2 = 3λ� + 2m2(λ + �) + m4, α3 =
√

(λ + m2)(� + m2),

α4 = λ2 + �2 − λ� − m4, α5 = λ� − m4. (78)

Then, in the new variables, Hamiltonian (20) has the form

H = 1

2

[
P 2

1 + P 2
2 + k

(
Q2

1 + Q2
2

)]
+

1

4α1

[
α5Q

4
1 + 2α2Q

2
1Q

2
2 + 4(� − λ)α3Q1Q

3
2 + α4Q

4
2

]
,

(79)

and the Hamiltonian equations read

Q̇1 = P1, Ṗ1 = −kQ1 − 1

α1

[
α5Q

3
1 + α2Q1Q

2
2 + (� − λ)α3Q

3
2

]
,

Q̇2 = P2, Ṗ2 = −kQ2 − 1

α1

[
α2Q

2
1Q2 + 3(� − λ)α3Q1Q

2
2 + α4Q

3
2

]
.

(80)

Thus, the third particular solution can be seen to be

{Q2 = P2 = 0,Q1 = Q1(η), P1 = Q′
1(η)}, 0 = 1

2

(
P 2

1 + kQ2
1 +

α5

2α1
Q4

1

)
. (81)

Of course, this is only valid for α1 �= 0. We investigate what happens when λ + � = −2m2 at
the end of this section.

Normal variational equations (NVE’s) along those three solutions (in the position
variables) are

ξ ′′(η) = [−k + m2q(η)2]ξ(η),

ξ ′′(η) = [−k + m2q(η)2]ξ(η),

ξ ′′(η) =
[
−k − α2

α1
q(η)2

]
ξ(η),

(82)

where q(η) is one of {q1(η), q2(η),Q1(η)}, depending on the respective particular solution.
We will consider the k = 0 case first. Changing the independent variable to z = q(η)2,

all the NVE’s are reduced to the following:

2z2ξ ′′(z) + 3zξ ′(z) − λiξ(z) = 0, (83)

whose solution is

ξ(z) = z−(1±√
1+8λi )/4, (84)

where we have introduced three important quantities

λ1 = −m2

�
, λ2 = −m2

λ
, λ3 = α2

α5
= 3 − 2(λ1 + λ2) + λ1λ2

1 − λ1λ2
. (85)

Note, that if any of �, λ or α5 is zero, the corresponding particular solution is constant and
cannot be used to restrict the problem’s integrability. Thus, we are left with the E = k = 0
case as suspected to be integrable.

When we assume k �= 0, or more precisely k2 = 1, and introduce the same independent
variable z as before, the NVE’s read

2z2(�z + 2k)ξ ′′(z) + z(3�z + 4k)ξ ′(z) + (m2z − k)ξ(z) = 0,

2z2(λz + 2k)ξ ′′(z) + z(3λz + 4k)ξ ′(z) + (m2z − k)ξ(z) = 0,

2z2

(
α5

α1
z + 2k

)
ξ ′′(z) + z

(
3
α5

α1
z + 4k

)
ξ ′(z) −

(
α2

α1
z + k

)
ξ(z) = 0.

(86)
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First, let us observe that unlike in the previous case, when any of �, λ or α5 is zero, the system
is not integrable. This happens, because then the NVE’s become the Bessel equation

s2ξ ′′(s) + sξ ′(s) + (s2 − n2)ξ(s) = 0, (87)

with n = 1 and in a new variable s = m
√

z/k (for the first two equations) or s = m
√−2z/k

(for the third equation). The Bessel equation is known not to possess Liouvillian solutions for
n = 1 [40]. Together with the results of the previous section this leads us to the following
lemma.

Lemma 1. System (20) considered on the zero or generic energy level with k2 = 1 is not
integrable when � or λ is zero. Additionally for λ + � �= −2m2, it is not integrable when
λ� = m4.

Assuming that none of those constants is zero, we rescale the variable z in the three
equations with

z → −2k

�
z, z → −2k

λ
z, z → 2kα1

α5
z, (88)

respectively, so that all three are transformed into a Riemann P equation of the form

ξ ′′(z) +

(
1 − δ − δ′

z
+

1 − γ − γ ′

z − 1

)
ξ ′(z)

+

[
δδ′

z2
+

γ γ ′

(z − 1)2
+

ββ ′ − δδ′ − γ γ ′

z(z − 1)

]
ξ(z) = 0, (89)

with the following pairs of exponents (δ, δ′), (γ, γ ′), (β, β ′) at its singular points(
1
2 ,− 1

2

)
,

(
1
2 , 0

)
,

(
1
4 + 1

4

√
1 + 8λi,

1
4 − 1

4

√
1 + 8λi

)
, i = 1, 2, 3. (90)

Using Kimura’s results on solvability of the Riemann P equation [38] we check when the
difference of the exponents give us cases with the necessary conditions for integrability
satisfied, and find that the parameters must belong to the following families:

λi = li(li + 1)

2
, li ∈ Z, i = 1, 2, 3. (91)

These polynomials in li are invariant with respect to the change l → −l − 1, so it is enough to
consider non-negative values only. Furthermore, λ1 and λ2 cannot be equal to zero, as m2 �= 0,
so l1 and l2 need to be strictly positive.

This result can be refined still. First, let us note, that λi are not independent and the
relation between them is

1

λ1 − 1
+

1

λ2 − 1
+

2

λ3 − 1
= −1, (92)

provided α1 �= 0 and α5 �= 0. In the above form we had to exclude the possibility of λi = 1,
so we consider it separately.

Both of λ1 and λ2 cannot be equal to 1, as that would mean α5 = 0 and we have shown
that then the equations are non-integrable if additionally α1 �= 0. The α1 = 0 case is described
below.

If only one of λi , say λ1 is 1, then necessarily λ3 = 1, which follows from definition (85),
and the only possibly integrable cases are those with λ2 satisfying (92) with l2 � 2. The same
holds when λ1 and λ2 are interchanged. Also, λ3 = 1 requires that one of the remaining λi

is 1.
When l1 and l2 are taken to be greater than 1, λ1 and λ2 are positive, so the relation

(92) requires that 2/(λ3 − 1) is negative. This only happens for l3 = 0 and it follows that
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l1 = l2 = 2, which is exactly the first known integrable case. Since 1/(λ1 − 1) and 1/(λ2 − 1)

are positive and tend to zero monotonically as li � 2 tends to infinity, there are no other
solutions, and no other integrable sets of parameters.

Finally, we turn to see what happens when α1 = 0, i.e. � + λ = −2m2. This is equivalent
to

1

λ1
+

1

λ2
= 2, (93)

provided λ �= 0 and � �= 0 and the same two conditions of (91) hold because the first two
variational equations can still be used. It is straightforward to check that the only integer
solution of

1

l1(l1 + 1)
+

1

l2(l2 + 1)
= 1 (94)

is l1 = l2 = 1 (so, incidentally, α5 = 0), which we recognize as the second case of our table.

6. Conclusions

The main results of our paper can be summarized as follows.
For the minimally coupled scalar fields, given by the Hamiltonian

H = 1

2

(
−p2

1 +
1

q2
1

p2
2

)
− kq2

1 + �q4
1 + m2q2

2q4
1 , (95)

we have:

Theorem 4. For � = 0, if the system is integrable, then necessarily E = k = 0.

Theorem 5. When � �= 0, if the system is integrable on a generic energy level, then either

(i) 9 − 4m2/� = l2 for some l ∈ Z, or
(ii) k = 0 and 9 − 4m2/� = (2n + 1)2 for n + 1

2 ∈ 1
3 Z ∪ 1

4 Z ∪ 1
5 Z \ Z.

Conjecture 5.1. Suppose � �= 0, and let n be an integer satisfying 9 − 4m2/� = (2n + 1)2.
If the system is integrable on a generic energy level E �= 0, then either

(i) n = 1 or n = −2 (m = 0 in both cases), or
(ii) k = 0 and 9 − 4m2/� = (2l)2 with l an odd integer, or

(iii) k = 0 and n + 1
2 ∈ 1

3 Z ∪ 1
4 Z ∪ 1

5 Z \ Z.

Note that this is more restrictive than theorem 5, as case 1 of this theorem admits more values
of n than the conjecture’s cases 1 and 2 put together.

Theorem 6. For the zero-energy level, and provided that � �= 0, if the system is integrable
then either

(i) k = 0, or
(ii) 9 − 4m2/� = (2n + 1)2, n ∈ Z.

While for the conformally coupled scalar fields, given by the Hamiltonian

H = 1
2

(−p2
1 + p2

2

)
+ 1

2

[
k
(−q2

1 + q2
2

)
+ m2q2

1q2
2

]
+ 1

4

(
�q4

1 + λq4
2

)
, (96)

we have:
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Theorem 7. The system restricted to a generic energy level E �= 0 is integrable if, and only if,

(i) k = 0, and its parameters belong to the four families listed in table 1. Otherwise there
exists no additional, meromorphic first integral.

(ii) k2 = 1, and its parameters belong to the first two families of table 1. Other than that,
there exists no additional, rational first integral.

The second part of the above theorem can be strengthened to meromorphic first integrals,
although not for all values of the parameters, as described in [12].

Theorem 8. If the system restricted to the zero-energy level is integrable, then either

(i) k = 0, or
(ii) k2 = 1 and its parameters belong to the first two families of table 1, or

(iii) k2 = 1 and one of {λ1, λ2} is equal to 1, and the other satisfies condition (91) with li � 2.

Otherwise, the system is not meromorphically integrable. In particular this means, that for
k2 = 1 if at least one of � and λ is zero, then the system is non-integrable.

These are, however, only necessary and not sufficient conditions, so that the system might
still prove not to be integrable at all. In particular, the numerical search for chaos suggests
both the lack of global first integrals, and crucial differences in the behaviour of the system
for real and imaginary values of the variables. This might be a clue, that the system might
have first integrals which are not analytic, and thus not prolongable to the complex domain.
A system with similar property was studied by the authors in [46].

The immediate physical consequences of the non-integrability is the non-existence of
constants or motion (by definition) or, in other words, laws of conservation. This results not
only in the complexity of evolution but also in a harder descriptive approach to a physical
system which does not possess any global, well-defined, preserved quantities like total charge
or spin (in general—we have not considered such quantities in the present work). It is
also obvious that direct integration, or obtaining the solutions in closed forms by means of
elementary functions is out of question with non-integrable problems.

Of course, depending on the properties of the first integrals, we might get quite different
results, and the requirement of meromorphicity or rationality is still very restrictive. As
described in the introduction, this leaves open the question of existence of real-analytic first
integrals. Also we recall that physically the scale factor a cannot even assume negative
values, and some authors argue that when cosmological (instead of conformal) time is used,
the evolution is not, in essence, chaotic [18]. Thus, we would like to stress that Liouvillian
integrability is a mathematical property of the system, and often the methods used to study
it require the complexification of variables. This means that when restricted to the narrower,
physical domain, the dynamics might be much simpler. And in particular we might be
interested in a particular trajectory whose behaviour is far from generic. It is no surprise then,
that the dynamics of our system when restricted to a > 0 might appear regular. It should
still be noted that the notion of chaos, although frequently associated with the integrability,
has not yet been successfully conflated with it. And that a regular evolution is not necessarily
integrable.
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Appendix A. Massless minimal field

When m = 0, the Hamilton–Jacobi equation for the main Hamiltonian (10) will become
separable, because it can be written as

Ea2 = 1

2

(
∂W

∂φ

)2

− 1

2
a2

(
∂W

∂a

)2

− ka4 + �a6 +
ω2

φ2
, (A.1)

with the full generating function S = W − Eη. Assuming W = A(a) + F(φ), equation (A.1)
can be solved with

F(φ) =
∫ √

2

(
J − ω2

φ2

)
dφ,

A(a) =
∫ √

2

(
�a4 − ka2 − E +

J

a2

)
da,

(A.2)

where J is a constant of integration. The first equation of motion can then be deduced from

∂W

∂E
− η =

∫
da√

2
(
�a4 − ka2 − E + J

a2

) = const, (A.3)

which can be rewritten as(
da

dη

)2

= 2

(
�a4 − ka2 − E +

J

a2

)
. (A.4)

Or, introducing a new variable v = a2, as(
dv

dη

)2

= 8(�v3 − kv2 − Ev + J ), (A.5)

so that the general solution is

a2 = v = 1

2�
℘(η − η0; g2, g3) +

k

3�
, (A.6)

where

g2 = 16

3
k2 + 16�E,

(A.7)
g3 = 32

3
�kE +

64

27
k3 − 32�2J,

and η0 is the constant of integration. Of course, for � = 0, equation (A.5) admits solutions in
terms of circular functions.

The equation for φ(η) is the following:

∂W

∂J
=

∫
dφ√

2
(
J − ω2

φ2

) +
∫

da

a2
√

2
(
�a4 − ka2 − E + J

a2

) = const, (A.8)
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which we simplify by using the just obtained solution for v(η) to get

const =
√

Jφ2 − ω2

√
2J

+
∫

dη

2v
. (A.9)

As v is an elliptic function of order two, the second integral can be evaluated by means of the
Weierstrass zeta and sigma functions to yield

const =
√

Jφ2 − ω2

√
2J

+
1

4
√

2J
[ζ(η1) − ζ(η2)]η +

1

4
√

2J
ln

[
σ(η − η1)

σ (η − η2)

]
, (A.10)

where η1,2, are the zeros of v(η), given by

3℘(η1,2; g2, g3) = −2k, (A.11)

and the constant of integration can be determined from the boundary conditions on the field
φ. The functions ζ and σ are defined as follows:

−ζ ′(z) = ℘(z), lim
z→0

(
ζ(z) − 1

z

) = 0,

(A.12)
σ ′(z)
σ (z)

= ζ(z), lim
z→0

σ(z)

z
= 1.

Again, for J = 0, the integrals in (A.8) reduce to simpler functions.

Appendix B. Massless conformal field

For m = 0 we can separately solve equations for each variable, so that we have

E1 = − 1
2 ȧ2 − 1

2ka2 + 1
4�a4,

(B.1)

E2 = 1
2 φ̇2 + 1

2

ω2

φ2
+ 1

2kφ2 + 1
4λφ4,

with E1 + E2 = E being the total energy. The first of these is immediately solved, when we
substitute v1 = a2 to get

v̇2
1 = 2�v3

1 − 4kv2
1 − 8E1v1, (B.2)

whose solution is

v1(η) = 2

�
℘(η − η1; g2, g3) +

2k

3�
, (B.3)

with η1 the integration constant and

g2 = 4
3k2 + 4�E1, g3 = 8

27k3 + 4
3k�E1. (B.4)

Of course, when � = 0 the Weierstrass function ℘ reduces to a trigonometric function.
Similarly, for the other variable, we substitute v2 = φ2 and obtain

v̇2
2 = −2λv3 − 4kv2 + 8E2v − 4ω2, (B.5)

whose solution is

v2(η) = −2

λ
℘(η − η2; g4, g5) − 2k

3λ
, (B.6)

where

g4 = 4

3
k2 + 4λE2, g5 = 8

27
k3 +

4

3
kλE2 + λ2ω2, (B.7)

and η2 is the integration constant. As before, for λ = 0 the solution degenerates to
trigonometric functions.
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Appendix C. Lamé equation in the Lamé–Hermite case

Let us consider Lamé equation

d2y

dt2
= (n(n + 1)℘ (t) + B)y, n ∈ N, (C.1)

where the Weierstrass function has two periods 2ω1 and 2ω2 which are independent over R.
We denote its differential Galois group over C(℘, ℘̇) by G.

Function v = ℘(t) satisfies the differential equation

v̇2 = 4v3 − g2v − g3 =: f (v). (C.2)

The algebraic form of Lamé equation is obtained from (C.1) by setting z = ℘(t) and it reads

y ′′ +
1

2

f ′(z)
f (z)

y ′ − n(n + 1)z + B

f (z)
y = 0, n ∈ N. (C.3)

Let GAL be the differential Galois group over C(z) of this equation.
As was shown in [20, section 5], G = GAL ∩ SL(2, C), and moreover it was also shown

that G is finite iff GAL is finite. In [9, corollary 3.4] it was proved that if GAL is finite, then
GAL is a dihedral group Dm of order 2m, for a certain m � 3. In this case,

G = Dm ∩ SL(2, C) =
{[

exp 2π i l
m

0
0 exp −2π i l

m

]
|l = 0, . . . , m − 1

}
.

This fact implies that if G is finite, then it is a cyclic group of order m for a certain m � 3, so
there are two independent solutions y1 and y2 of (C.1) such that ym

i ∈ C(℘, ℘̇), for i = 1, 2.
Now, it is known that for given n ∈ N, and m � 3 the number of linearly non-equivalent

Lamé equations (C.3) with differential Galois Dm is finite, see [9, 24]. Nevertheless, for long
time it was unclear if there exists a Lamé equation (C.3) for which GAL is finite. This problem,
among other things, was analysed by Baldassarri and Dwork, see [2–4], but only a bound on
m was found. Later, see [5, 6], examples of Lamé equations (C.3) with a finite differential
Galois group were found.

In practice, it is important to distinguish parameters n,B, g2 and g3 for which GAL is Dm

with prescribed m � 3. However, as far as we know, such conditions are difficult to obtain.
For n = 1 and m = 5 such conditions are given explicitly in [5] where it is conjectured
that for arbitrary n and m they should have a polynomial form with respect to variables B, g2

and g3.
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J. Symbolic Comput. 28 521–45
[21] Coelho L A A, Skea J E F and Stuchi T J 2008 On the integrability of Friedmann-Roberstson-Walker models

with conformally coupled massive scalar fields J. Phys. A: Math. Theor. 41 075401
[22] Copeland E J, Sami M and Tsujikawa S 2006 Dynamics of dark energy Int. J. Mod. Phys. D 15 1753–936

(arXiv:hep-th/0603057)
[23] Cornish N J and Shellard E P S 1998 Chaos in quantum cosmology Phys. Rev. Lett. 81 3571–4

(arXiv:gr-qc/9708046)
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